Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Correlating the Nanostructure and Electronic Properties of InAs Nanowires

Identifieur interne : 004542 ( Main/Repository ); précédent : 004541; suivant : 004543

Correlating the Nanostructure and Electronic Properties of InAs Nanowires

Auteurs : RBID : Pascal:10-0276799

Descripteurs français

English descriptors

Abstract

The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ˜4× larger in the nominally defect free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0276799

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Correlating the Nanostructure and Electronic Properties of InAs Nanowires</title>
<author>
<name sortKey="Schroer, M D" uniqKey="Schroer M">M. D. Schroer</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Petta, J R" uniqKey="Petta J">J. R. Petta</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0276799</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0276799 INIST</idno>
<idno type="RBID">Pascal:10-0276799</idno>
<idno type="wicri:Area/Main/Corpus">004390</idno>
<idno type="wicri:Area/Main/Repository">004542</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier mobility</term>
<term>Contact resistance</term>
<term>Defect density</term>
<term>Defect formation</term>
<term>Electronic properties</term>
<term>Field effect transistors</term>
<term>High density</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>Ohmic contacts</term>
<term>Quantum dots</term>
<term>Transport properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nanostructure</term>
<term>Propriété électronique</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Transistor effet champ</term>
<term>Synthèse nanomatériau</term>
<term>Densité élevée</term>
<term>Densité défaut</term>
<term>Mobilité porteur charge</term>
<term>Propriété transport</term>
<term>Résistance contact</term>
<term>Contact ohmique</term>
<term>Point quantique</term>
<term>Formation défaut</term>
<term>InAs</term>
<term>6865</term>
<term>7321</term>
<term>8107V</term>
<term>8107B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ˜4× larger in the nominally defect free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>10</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Correlating the Nanostructure and Electronic Properties of InAs Nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SCHROER (M. D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PETTA (J. R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1618-1622</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000180681230160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>45 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0276799</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ˜4× larger in the nominally defect free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C21</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transistor effet champ</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Field effect transistors</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Densité élevée</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>High density</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Densidad elevada</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Densité défaut</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Defect density</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Densidad defecto</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Propriété transport</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Transport properties</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Propiedad transporte</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Résistance contact</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Contact resistance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Contact ohmique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Ohmic contacts</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Formation défaut</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Defect formation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Formación defecto</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7321</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>181</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004542 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004542 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0276799
   |texte=   Correlating the Nanostructure and Electronic Properties of InAs Nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024